Jumat, 22 Desember 2017

Sponsored Links

Photos of the Falcon 9 landing on a ship - Business Insider
src: static4.businessinsider.com

Falcon 9 is a family of two-stage-to-orbit medium lift launch vehicles, named for its use of nine first-stage engines, designed and manufactured by SpaceX. Variants include the retired Falcon 9 v1.0 and Falcon 9 v1.1, as well as the current Falcon 9 Full Thrust, the world's first partially-reusable launch system. Both are powered by rocket engines utilizing liquid oxygen (LOX) and rocket-grade kerosene (RP-1) propellants.

The current "Full Thrust" version can lift payloads of up to 22,800 kilograms (50,300 lb) to low Earth orbit, and up to 8,300 kg (18,300 lb) to geostationary transfer orbit (GTO), when configured in expendable mode. The first stage can be recovered and reused for GTO payloads up to 5,500 kg (12,100 lb), automatically landing after disconnection of the second stage.

In 2008, SpaceX won a Commercial Resupply Services (CRS) contract NASA's Commercial Orbital Transportation Services (COTS) program to deliver cargo to the International Space Station (ISS) using the Falcon 9 and Dragon capsule. The first mission under this contract launched in October 2012.

Altogether, the initial version 1.0 flew five times from June 2010 to March 2013 and version 1.1 flew fifteen times from September 2013 to January 2016. The "Full Thrust" version has been in service since December 2015. The Falcon Heavy derivative, slated for debut in January 2018, groups three Falcon 9 first stages together. SpaceX intends to certify the Falcon 9 to be human-rated for transporting NASA astronauts to the ISS as part of the Commercial Crew Development program. In October 2016, SpaceX CEO Elon Musk announced an upcoming "final upgrade" called Falcon 9 Block 5, which will feature increased engine thrust, improved landing legs, and other minor improvements to help recovery and reuse.


Video Falcon 9



Development history

Conception and funding

While SpaceX spent its own money to develop the previous launcher, Falcon 1, development of the Falcon 9 was accelerated by NASA funding parts of development costs and committing to purchase several commercial flights if specific capabilities were demonstrated. This started with seed money from the Commercial Orbital Transportation Services (COTS) program in 2006. The contract was structured as a Space Act Agreement (SAA) "to develop and demonstrate commercial orbital transportation service" including the purchase of three demonstration flights. The overall contract award was US$278 million to provide development funding for Dragon, Falcon 9, and demonstration launches of Falcon 9 with Dragon. In 2011 additional milestones were added, bringing the total contract value to US$396 million.

NASA became an anchor tenant for the vehicle in 2008, when they contracted to purchase 12 Commercial Resupply Services launches to the International Space Station, whereby funds would be disbursed only after the initial COTS demonstration missions were completed and deemed successful. The space logistics delivery contract was worth US$1.6 billion for a minimum of 12 missions to carry supplies to and from the station.

Musk has repeatedly said that, without the NASA money, development would have taken longer.

SpaceX has only come this far by building upon the incredible achievements of NASA, having NASA as an anchor tenant for launch, and receiving expert advice and mentorship throughout the development process. SpaceX would like to extend a special thanks to the NASA COTS office for their continued support and guidance throughout this process. The COTS program has demonstrated the power of a true private/public partnership and we look forward to the exciting endeavors our team will accomplish in the future.

In 2011, SpaceX estimated that Falcon 9 v1.0 development costs were on the order of $300 million. NASA evaluated that development costs would have been $3.6 billion if a traditional cost-plus contract approach had been used. In 2014, SpaceX released total combined development costs for both the Falcon 9 and the Dragon capsule. NASA provided US$396 million while SpaceX provided over US$450 million to fund rocket and capsule development efforts.

Congressional testimony by SpaceX in 2017 suggested that the unusual NASA process of "setting only a high-level requirement for cargo transport to the space station [while] leaving the details to industry" had allowed SpaceX to design and develop the Falcon 9 rocket on its own at substantially lower cost. "According to NASA's own independently verified numbers, SpaceX's development costs of both the Falcon 1 and Falcon 9 rockets were estimated at approximately US$390 million in total." A 2011 NASA report "estimated that it would have cost the agency about US$4 billion to develop a rocket like the Falcon 9 booster based upon NASA's traditional contracting processes" while "a more 'commercial development' approach might have allowed the agency to pay only US$1.7 billion."

Development

SpaceX originally intended to follow its light Falcon 1 launch vehicle with an intermediate capacity vehicle, the Falcon 5. In 2005, SpaceX announced it was instead proceeding with development of the Falcon 9, a "fully reusable heavy lift launch vehicle", and had already secured a government customer. The Falcon 9 was described as being capable of launching approximately 9,500 kg (21,000 lb) to low Earth orbit, and was projected to be priced at $27 million per flight with a 3.7 m (12 ft) fairing and $35 million with a 5.2 m (17 ft) fairing. SpaceX also announced development of a heavy version of the Falcon 9 with a payload capacity of approximately 25,000 kg (55,000 lb). The Falcon 9 was intended to enable launches to LEO, GTO, as well as both crew and cargo vehicles to the ISS.

Testing

The original NASA COTS contract called for the first demonstration flight of Falcon in September 2008, and completion of all three demonstration missions by September 2009. In February 2008, the plan for the first Falcon 9/Dragon COTS Demo flight was delayed by six months to late in the first quarter of 2009. According to Elon Musk, the complexity of the development work and the regulatory requirements for launching from Cape Canaveral contributed to the delay.

The first multi-engine test (with two engines connected to the first stage, firing simultaneously) was successfully completed in January 2008, with successive tests leading to the full Falcon 9 complement of nine engines test fired for a full mission length (178 seconds) of the first stage in November 2008. In October 2009, the first flight-ready first stage had a successful all-engine test fire at the company's test stand in McGregor, Texas. In November 2009 SpaceX conducted the initial second stage test firing lasting forty seconds. This test succeeded without aborts or recycles. In January 2010, a full-duration (329 seconds) orbit-insertion firing of the Falcon 9 second stage was conducted at the McGregor test site. The full stack arrived at the launch site for integration at the beginning of February 2010, and SpaceX initially scheduled a launch date of March 2010, though they estimated anywhere between one and three months for integration and testing.

In February 2010, SpaceX's first flight stack was set vertical at Space Launch Complex 40, Cape Canaveral, and on March 9, SpaceX performed a static fire test, where the first stage was to be fired without taking off. The test aborted at T-2 seconds due to a failure in the system designed to pump high-pressure helium from the launch pad into the first stage turbopumps, which would get them spinning in preparation for launch. Subsequent review showed that the failure occurred when a valve did not receive a command to open. As the problem was with the pad and not with the rocket itself, it didn't occur at the McGregor test site, which did not have the same valve setup. Some fire and smoke were seen at the base of the rocket, leading to speculation of an engine fire. However, the fire and smoke were the result of normal burnoff from the liquid oxygen and fuel mix present in the system prior to launch, and no damage was sustained by the vehicle or the test pad. All vehicle systems leading up to the abort performed as expected, and no additional issues were noted that needed addressing. A subsequent test on March 13 was successful in firing the nine first-stage engines for 3.5 seconds.

Production

In December 2010, the SpaceX production line was manufacturing one Falcon 9 (and Dragon spacecraft) every three months, with a plan to double the rate to one every six weeks. By September 2013, SpaceX total manufacturing space had increased to nearly 1,000,000 sq ft (93,000 m2) and the factory had been configured to achieve a maximum production rate of 40 rocket cores per year. The factory was producing one Falcon 9 vehicle per month as of November 2013. The company planned to increase to 18 vehicles per year in mid-2014, 24 per year by the end of 2014, and 40 rocket cores per year by the end of 2015.

These production rates were not achieved by February 2016 as previously planned; the company indicated that production rate for Falcon 9 cores had only recently increased to 18 per year, and the number of first stage cores that can be assembled at one time had doubled from three to six. The production rate was expected to grow to 30 cores per year by the end of 2016, but as of August 2016, SpaceX was working towards a production capacity of 40 cores per year, the full factory capacity envisioned in 2013.


Maps Falcon 9



Launch history

Rockets from the Falcon 9 family have been launched 45 times over 7 years, resulting in 43 full mission successes (95.6% success rate), one partial success (with primary orbital payload delivery completed, but a secondary payload left in a lower-than-planned orbit), and one failure (with total loss of spacecraft). Additionally, one rocket and payload were destroyed before launch in preparation for an on-pad static fire test. 20 of 25 landing attempts (80%) have succeeded in recovering the rocket's first stage, including the 16 latest ones.

The first rocket version Falcon 9 v1.0 was launched 5 times from June 2010 to March 2013, its successor Falcon 9 v1.1 15 times from September 2013 to January 2016 and the latest upgrade Falcon 9 Full Thrust 25 times from December 2015 to present.


Notable flights

  • Flight 1, Dragon Spacecraft Qualification Unit, success on maiden flight
  • Flight 2, COTS Demo Flight 1, first operational test of the Dragon capsule
  • Flight 3, Dragon C2+, first cargo delivery to the International Space Station
  • Flight 6, CASSIOPE, first v1.1 rocket, first launch from Vandenberg, first polar orbit, first scientific payload, first attempt at propulsive return of the first stage
  • Flight 7, SES-8, first launch to GTO, first commercial payload (communications satellite)
  • Flight 9, CRS-3, added landing legs, first fully controlled descent and vertical ocean touchdown (zero altitude, zero velocity)
  • Flight 14, CRS-5, added grid fins, first attempt at landing on drone ship, popular RUD video
  • Flight 15, DSCOVR, first mission passing escape velocity to the Sun-Earth L1 point, a solar orbit beyond the Moon distance
  • Flight 16, ABS-3A and Eutelsat 115 West B, first launch of a dual satellite stack, innovative Boeing 702SP satellites using full electric propulsion with electrostatic ion thrusters
  • Flight 19, CRS-7, total loss of mission due to structural failure and helium overpressure in the second stage
  • Flight 20, Orbcomm OG-2, first full-thrust rocket version, first deployment of multiple satellites (11 on this mission) in a constellation from a custom dispenser, first vertical landing achieved on Landing Zone 1 at Cape Canaveral by booster B1019
  • Flight 23, CRS-8, first vertical landing achieved on a drone ship at sea
  • Flight 24, JCSAT-14, high-energy atmospheric re-entry and first landing from a GTO mission
  • Amos-6, total vehicle and payload loss prior to static fire test (would have been flight 29)
  • Flight 30, CRS-10, first launch from historic pad LC-39A at the Kennedy Space Center
  • Flight 32, SES-10, first launch and landing of a previously flown orbital class booster (B1021, previously used for CRS-8), first recovery of a fairing
  • Flight 33, NROL-76, first classified payload
  • Flight 35, CRS-11, first reflight of a recovered Dragon capsule to the ISS (C106, previously used for CRS-4)
  • Flight 38, Intelsat 35e, heaviest GTO payload to date: 6,761 kg (14,905 lb)

LEGO Falcon 9 | Curtis Farnham
src: curtisfarnham.com


Design

The Falcon 9 is a two-stage, LOX/RP-1-powered heavy-lift launch vehicle. Both stages are equipped with Merlin 1D rocket engines; nine sea-level adapted versions on the first stage and one vacuum adapted version on the second stage. Every engine utilises a pyrophoric mixture of triethylaluminum-triethylborane (TEA-TEB) as an engine igniter. The first stage engines are arranged in a structural form SpaceX calls "Octaweb". Many cores include four extensible landing legs attached around the base of the Octaweb. To control the descent of the boosters and center core through the atmosphere, SpaceX often uses grid fins which deploy from the vehicle after separation. The legs will then deploy as the boosters return to Earth, landing each softly on the ground.

The propellant tank walls and domes are made from aluminium-lithium alloy. SpaceX uses an all friction-stir welded tank, the highest strength and most reliable welding technique available. The second stage tank of a Falcon 9 is simply a shorter version of the first stage tank and uses most of the same tooling, material and manufacturing techniques, reducing production costs. The Falcon 9 interstage, which connects the upper and lower stage, is a carbon-fiber aluminum-core composite structure. Reusable separation collets and a pneumatic pusher system separate the stages. The original design stage separation system had twelve attachment points, which was reduced to just three in the v1.1 launcher.

The Falcon 9 uses a payload fairing to protect (non-Dragon) satellites during launch. The fairing is 13 m (43 ft) long, 5.2 m (17 ft) in diameter, and is constructed of carbon fiber skin overlaid on an aluminum honeycomb core. SpaceX designed and fabricates fairings at their headquarters in Hawthorne, California. Testing of the design was completed at NASA's Plum Brook Station facility in spring 2013 where the acoustic shock and mechanical vibration of launch, plus electromagnetic static discharge conditions, were simulated on a full-size test article in a very large vacuum chamber.

SpaceX uses multiple redundant flight computers in a fault-tolerant design. Each Merlin rocket engine is controlled by three voting computers, each of which has two physical processors that constantly check each other. The software runs on Linux and is written in C++. For flexibility, commercial off-the-shelf parts and system-wide radiation-tolerant design are used instead of rad-hardened parts. Each stage has stage-level flight computers, in addition to the Merlin-specific engine controllers, of the same fault-tolerant triad design to handle stage control functions.


SpaceX successfully lands a Falcon 9 rocket at sea for the third ...
src: cdn.vox-cdn.com

Capabilities

Reliability

SpaceX had predicted that its launches would have high reliability based on the philosophy that "through simplicity, reliability and low cost can go hand-in-hand" by 2011. As of 15 December 2017 Falcon 9 has achieved 44 out of 46 primary missions, with one rocket destroyed in flight and one on the launch pad during fueling for an engine test, yielding a success rate of 95.7%. For comparison, present industry benchmark, the Russian Soyuz series has more than 1,700 launches with a success rate of 97.4%.

As with the company's smaller Falcon 1 vehicle, Falcon 9's launch sequence includes a hold-down feature that allows full engine ignition and systems check before liftoff. After first-stage engine start, the launcher is held down and not released for flight until all propulsion and vehicle systems are confirmed to be operating normally. Similar hold-down systems have been used on other launch vehicles such as the Saturn V and Space Shuttle. An automatic safe shut-down and unloading of propellant occurs if any abnormal conditions are detected. Prior to the launch date, SpaceX always completes a test of the Falcon 9 culminating in a firing of the first stage's Merlin 1D engines for three-and-a-half seconds to verify performance.

Falcon 9 has triple redundant flight computers and inertial navigation, with a GPS overlay for additional orbit insertion accuracy.

Engine-out capability

Like the Saturn rocket series from the Apollo program, the presence of multiple first-stage engines allow for mission completion even if one of the first-stage engines fails during flight. Detailed descriptions of several aspects of destructive engine failure modes and designed-in engine-out capabilities were made public by SpaceX in a 2007 "update" that was publicly released.

SpaceX emphasized over several years that the Falcon 9 first stage is designed for engine out capability. The SpaceX CRS-1 mission in October 2012 was a partial success after an engine failure in the first stage: engine no. 1 experienced a loss of pressure at 79 seconds, and then shut down. To compensate for the resulting loss of acceleration, the first stage had to burn 28 seconds longer than planned, and the second stage had to burn an extra 15 seconds. That extra burn time of the second stage reduced its fuel reserves, so that the likelihood that there was sufficient fuel to reach the planned orbit above the space station with the secondary payload dropped from 99% to 95%. Because NASA had purchased the launch and therefore contractually controlled a number of mission decision points, NASA declined SpaceX's request to restart the second stage and attempt to deliver the secondary payload into the correct orbit. This risk was understood by the secondary payload customer at time of the signing of the launch contract. As a result, the secondary payload satellite reentered the atmosphere a few days after launch.

Reusability

SpaceX intended to recover the first stages of several early Falcon flights to assist engineers in designing for future reusability. They were equipped with parachutes but failed to survive the aerodynamic stress and heating during atmospheric re-entry following stage separation. Although reusability of the second stage is more difficult, SpaceX intended from the beginning to make both stages of the Falcon 9 reusable. Both stages in the early launches were covered with a layer of ablative cork and had parachutes to land them gently in the sea. The stages were also marinized by salt-water corrosion resistant material, anodizing and paying attention to galvanic corrosion. Musk said that if the vehicle does not become reusable, "I will consider us to have failed."

In late 2011, SpaceX announced a change in the approach, eliminating the parachutes and going with a propulsively-powered-descent approach. Included was a video said to be an approximation depicting the first stage returning tail-first for a powered descent and the second stage, with heat shield, reentering head first before rotating for a powered descent. Design was complete on the system for "bringing the rocket back to launchpad using only thrusters" by February 2012.

A reusable first stage was then flight tested by SpaceX with the suborbital Grasshopper rocket. Between 2012-2013, this low-altitude, low-speed demonstration test vehicle made eight VTVL test flights, including an 79-second round-trip flight to an altitude of 744 m (2,441 ft). In March 2013, SpaceX announced that, beginning with the first flight of the Falcon 9 v1.1 (the sixth flight overall of Falcon 9), every first stage would be instrumented and equipped as a controlled descent test vehicle. SpaceX continued their propulsive-return over-water tests, saying they "will continue doing such tests until they can do a return to the launch site and a powered landing. ... [SpaceX] expect several failures before they 'learn how to do it right.'"

Post-mission flight tests and landing attempts

For Falcon 9 Flight 6 in September 2013, after stage separation, the flight test plan called for the first-stage booster to first burn to reduce its reentry velocity, and then effect a second burn just before it reached the water. SpaceX stated they expected several powered-descent tests to achieve successful recovery, before they could then attempt a landing on a solid surface. Although not a complete success, the stage was able to change direction and make a controlled entry into the atmosphere. During the final landing burn, the ACS thrusters could not overcome an aerodynamically induced spin, and centrifugal force deprived the landing engine of fuel leading to early engine shutdown and a hard splashdown that destroyed the first stage.

After four more ocean landing tests, the first stage of the CRS-5 launch vehicle attempted a landing on a floating landing platform, the "Autonomous Spaceport Drone Ship" (ASDS) in January 2015. The rocket incorporated (for the first time in an orbital mission) grid fin aerodynamic control surfaces, and guided itself to the ship successfully, but ran out of hydraulic fluid and lost its steering ability, destroying it on impact with the landing platform. A second attempt to land on a floating platform occurred in April 2015, on CRS-6. After the launch, Elon Musk communicated that the bipropellant valve had become stuck, and therefore the control system could not react rapidly enough for a successful landing.

The first attempt to land the first stage of Falcon 9 on a ground pad near the launch site occurred on flight 20, the maiden flight of the Falcon 9 Full Thrust version in December 2015. The landing was successful and the first stage was recovered. This was the first time in history that a rocket first stage returned to Earth after propelling an orbital launch mission and achieving a controlled vertical landing. The first successful first-stage landing on an ASDS occurred in April 2016 on the drone ship Of Course I Still Love You during the CRS-8 mission.

In total, sixteen test flights were conducted from 2013 to 2016, six of which achieved a soft landing and recovery of the booster. Since January 2017, SpaceX has stopped referring to landing attempts as "experimental" in their press releases, indicating that they are now considered a routine procedure; every landing attempt since has been successful.

Relaunch of previously-flown first stages

The first operational re-use of a previously-flown Falcon 9 booster was successfully accomplished in March 2017 with B1021 on the SES-10 mission after CRS-8 in April 2016. The booster landed a second time and was retired. In June 2017, booster B1029 helped carry BulgariaSat-1 towards GTO after an Iridium NEXT LEO mission in January, again achieving the reuse and second landing of a recovered booster. A third reflight of a flight-proven booster was performed in October 2017, on the SES-11/Echostar 105 mission, using the booster originally flown on CRS-10.

Recovery of second stages and fairings

By late 2014, SpaceX determined that the mass needed for a re-entry heat shield, landing engines, and other equipment to support recovery of the second stage was at that time prohibitive, and indefinitely suspended their second-stage reusability plans for the Falcon line.

Payload fairings have survived descent and splashdown in the Pacific Ocean. In June 2015, wreckage of an unidentified Falcon 9 launch vehicle was found off the coast of The Bahamas, which was confirmed by SpaceX CEO Elon Musk to be a component of the payload fairing that washed ashore. Musk noted the possibility of fairing reusability in a statement: "This is helpful for figuring out fairing reusability." In March 2017, SpaceX for the first time recovered a fairing from the SES-10 mission, aided by thrusters and a steerable parachute helping it glide towards a gentle touchdown on water.


SpaceX Finally Knows What Caused its Falcon 9 Rocket to Explode ...
src: www.popsci.com


Launcher versions

The original Falcon 9 v1.0 flew five successful orbital launches in 2010-2013. The much larger Falcon 9 v1.1 made its first flight in September 2013. The demonstration mission carried a very small 500 kg (1,100 lb) primary payload, the CASSIOPE satellite; larger payloads followed for v1.1, starting with the launch of the large SES-8 GEO communications satellite. Both Falcon 9 v1.0 and Falcon 9 v1.1 were expendable launch vehicles (ELVs). The third--and current--version of the Falcon 9 is the Falcon 9 Full Thrust which made its first flight in December 2015. The first stage of the Falcon 9 Full Thrust version is reusable.

Falcon 9 v1.0

The first version of the Falcon 9 launch vehicle, Falcon 9 v1.0, was an expendable launch vehicle that was developed in 2005-2010, and was launched for the first time in 2010. Falcon 9 v1.0 made five flights in 2010-2013, after which it was retired.

The Falcon 9 v1.0 first stage was powered by nine SpaceX Merlin 1C rocket engines arranged in a 3×3 pattern. Each of these engines had a sea-level thrust of 556 kN (125,000 pounds-force) for a total thrust on liftoff of about 5,000 kN (1,100,000 pounds-force). The Falcon 9 v1.0 second stage was powered by a single Merlin 1C engine modified for vacuum operation, with an expansion ratio of 117:1 and a nominal burn time of 345 seconds. Gaseous N2 thrusters were used on the Falcon 9 v1.0 second-stage as a reaction control system.

SpaceX expressed hopes initially that both stages would eventually be reusable. But early results from adding lightweight thermal protection system capability to the booster stage and using parachute recovery were not successful, leading to abandonment of that approach and the initiation of a new design. In 2011, SpaceX began a formal and funded development program for a reusable Falcon 9, with the early program focus however on return of the first stage.

Falcon 9 v1.1

The Falcon 9 v1.1 ELV is a 60 percent heavier rocket with 60 percent more thrust than the v1.0 version of the Falcon 9. It includes realigned first-stage engines and 60 percent longer fuel tanks, making it more susceptible to bending during flight. Development testing of the v1.1 first stage was completed in July 2013. The Falcon 9 v1.1, first launched in September 2013, uses a longer first stage powered by nine Merlin 1D engines arranged in an "octagonal" pattern, that SpaceX calls Octaweb. This is designed to simplify and streamline the manufacturing process.

The v1.1 first stage has a total sea-level thrust at liftoff of 5,885 kN (1,323,000 lbf), with the nine engines burning for a nominal 180 seconds, while stage thrust rises to 6,672 kN (1,500,000 lbf) as the booster climbs out of the atmosphere. The engines have been upgraded to the more powerful Merlin 1D. These improvements increased the payload capability from 9,000 kg (20,000 lb) to 13,150 kg (28,990 lb). The stage separation system has been redesigned and reduces the number of attachment points from twelve to three, and the vehicle has upgraded avionics and software as well. Following the September 2013 launch, the second stage igniter propellant lines were insulated to better support in-space restart following long coast phases for orbital trajectory maneuvers.

SpaceX President Gwynne Shotwell has stated the Falcon 9 v1.1 has about 30 percent more payload capacity than published on its standard price list, the extra margin reserved for returning of stages via powered re-entry. Four extensible carbon fiber with aluminum honeycomb landing legs were included on later flights where landings were attempted.

Falcon 9 Full Thrust

The "Full Thrust upgrade" version--the third major version of the Falcon 9 launch vehicle following the Falcon 9 v1.0 (launched 2010-2013) and the Falcon 9 v1.1 (launched 2013 - January 2016)--has cryogenic cooling of propellant to increase density allowing 17% higher thrust, an improved stage separation system, a stretched upper stage that can hold additional propellant, and strengthened struts for holding helium bottles believed to have been involved with the failure of flight 19.

SpaceX pricing and payload specifications published for the non-reusable Falcon 9 v1.1 rocket as of March 2014 actually included about 30 percent more performance than the published price list indicated; the additional performance was reserved for SpaceX to do reusability testing with the Falcon 9 v1.1 while still achieving the specified payloads for customers. Many engineering changes to support reusability and recovery of the first stage had been made on the v1.1 version and testing was successful, with SpaceX having room to increase the payload performance for the Full Thrust version, or decrease launch price, or both.

The Full Thrust version of the rocket has a reusable first stage after achieving its first successful landing in December 2015 and first reflight in March 2017. However, plans to reuse the Falcon 9 second-stage booster have been abandoned as the weight of a heat shield and other equipment would impinge on payload too much for this to be economically feasible for this rocket. The reusable booster stage was developed using systems and software tested on the Grasshopper and F9R Dev technology demonstrators, as well as a set of technologies being developed by SpaceX to facilitate rapid reusability.

In February 2017, SpaceX's CRS-10 launch was the first operational launch utilizing the new Autonomous Flight Safety System (AFSS) that is built into Falcon 9 Full Thrust launch vehicles. For all SpaceX launches after 16 March 2017, the autonomous AFSS has replaced "the ground-based mission flight control personnel and equipment with on-board Positioning, Navigation and Timing sources and decision logic. The benefits of AFSS include increased public safety, reduced reliance on range infrastructure, reduced range spacelift cost, increased schedule predictability and availability, operational flexibility, and launch slot flexibility."

On the June 25, 2017 mission carrying the second batch of ten Iridium NEXT satellites, aluminum grid fins were replaced by titanium versions, to improve control authority and better cope with heat during re-entry.

Falcon 9 Block 4

In 2017, SpaceX started including incremental changes to the Falcon 9 Full Thrust, internally calling it the "Block 4" version. Initially only the second stage was modified to Block 4 standards, flying on top of a "Block 3" first stage for three missions: NROL-76 and Inmarsat-5 F4 in May 2017, and Intelsat 35e in July. Block 4 was described as a transition between the Full Thrust v1.2 "Block 3" and the forthcoming Falcon 9 Block 5. It includes incremental engine thrust upgrades leading to the final planned thrust for Block 5. The maiden flight of the full Block 4 design (first and second stages) was the NASA CRS-12 mission on August 14, 2017.

Falcon 9 Block 5

In October 2016, Musk described a Falcon 9 "Block 5" version that would have "a lot of minor refinements that collectively are important, but uprated thrust and improved legs are the most significant." In January 2017 Musk added that the Block 5 version "[s]ignificantly improves performance & ease of reusability". He described this version as the "final" version of the rocket. Its maiden flight is planned for April 2018, either the launch of Iridium NEXT 51-55 and GRACE-FO 1 and 2, or SpX-DM1, the uncrewed demonstration mission of the Dragon 2 capsule.

Comparison


Watch SpaceX's Falcon 9 Rocket make a flawless landing - Video - Tech
src: i2.cdn.turner.com


Launch sites

As of June 2017, the Falcon 9 has launched from three orbital launch sites: Launch Complex 39A of the Kennedy Space Center, Space Launch Complex 4E of the Vandenberg Air Force Base, and Space Launch Complex 40 at Cape Canaveral Air Force Station; the latter was damaged in the Amos-6 accident in September 2016, but is operational again since December 2017. SpaceX is also building a commercial-only launch facility at the Boca Chica site near Brownsville, Texas, from which the Falcon 9 is expected to launch from late 2018.


SpaceX Falcon 9 v1.2 Data Sheet
src: spacelaunchreport.com


Launch prices

At the time of the rocket's maiden flight in 2010, the price of a Falcon 9 v1.0 launch was listed from $49.9 to $56 million. By 2012, the listed price range had increased to $54-$59.5 million. In August 2013, the initial list price for a Falcon 9 v1.1 was $56.5 million; it was raised to $61.2 million by June 2014. Since May 2016, the standard price for a Falcon 9 Full Thrust mission (allowing booster recovery) is published as $62 million. Dragon cargo missions to the ISS have an average cost of $133 million under a fixed price contract with NASA, including the cost of the capsule. The DSCOVR mission, also launched with Falcon 9 for NOAA, cost $97 million

In 2004, Elon Musk stated, "long term plans call for development of a heavy lift product and even a super-heavy, if there is customer demand. [...] Ultimately, I believe $500 per pound ($1100/kg) [of payload delivered to orbit] or less is very achievable." At its 2016 launch price and at full LEO payload capacity, the Falcon 9 FT cost $2,719 per kilogram ($1,233/lb) for the expendable version. In comparison, at full GTO payload capacity, the Falcon 9 FT cost $7,470 per kilogram ($3,390/lb) for the expendable version and $11,273 per kilogram ($5,113/lb) for the 1st launch of the reusable version.

In 2011, Musk estimated that fuel and oxidizer for the Falcon 9 v1.0 rocket cost a total of about $200,000. The first stage uses 150,000 L (39,000 US gal) of liquid oxygen and almost 95,000 L (25,000 US gal) of kerosene, while the second stage uses 28,000 L (7,300 US gal) of liquid oxygen and 17,000 L (4,600 US gal) of kerosene.

Secondary payload services

Falcon 9 payload services include secondary and tertiary payload connection via an EELV Secondary Payload Adapter ring, the same interstage adapter first used for launching secondary payloads on US DoD missions that use the Evolved Expendable Launch Vehicles (EELV) Atlas V and Delta IV. This enables secondary and even tertiary missions with minimal impact to the original mission. In 2011, SpaceX announced pricing for ESPA-compatible payloads on the Falcon 9.


SpaceX Falcon 9 landing seen from droneship, 30 March 2017 - YouTube
src: i.ytimg.com


See also

  • Comparison of orbital launch systems
  • Falcon (rocket family)

SpaceX preparing for first re-use of Falcon 9 rocket slated for ...
src: cdn.teslarati.com


References


Details of SpaceX Falcon-9 Landing Attempt at Cape Canaveral ...
src: www.americaspace.com


External links

  • Falcon 9 official page
  • Falcon Heavy official page
  • Test firing of two Merlin 1C engines connected to Falcon 9 first stage, Movie 1, Movie 2 (January 18, 2008)
  • Press release announcing design (September 9, 2005)
  • SpaceX hopes to supply ISS with new Falcon 9 heavy launcher (Flight International, September 13, 2005)
  • SpaceX launches Falcon 9, With A Customer (Defense Industry Daily, September 15, 2005)

Source of the article : Wikipedia

Comments
0 Comments